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1 Introduction

The purpose of this paper is to present the proof of a theorem concerning the density
of integers n divisible by a certain integer m such that m doesn’t divide o(n)-(n).
We will demonstrate that this density is zero by giving an asymptotic upper bound
of the cardinality of these numbers n less than a real x.

2 Notations and Definitions

In the rest of the paper:
Let m be a fixed natural integer > 3.

x and t will designate positive real numbers.
We denote (mod m) by [m] for brevity.

We define the sum-of-divisors and sum-of-proper-divisors functions like so:

o(n) = d. (1)

dk

And
d'(n) =o(n) —n. (2)

And we also define the function ¢(n) as Euler’s totient function, which counts
the number of integers < n that are coprime to n.



3 Theorem 1

The (asymptotic) density of the integers n divisible by m such that m doesn’t divide
o'(n) is zero.

Furthermore, we also give the following asymptotic upper bound for any suffi-
ciently large real number x:

A () := card{n < x such that m|n and m fo'(n)} = O (L> .3

(Inln J:)ﬁ

4 Proof of the Theorem

In order to prove this theorem, we need to prove the following intermediate lemma:

5 Lemma

For all real numbers z:

Sm(x) == card{n < x such that m fo(n)} = O (%) . (4)
(Inln z)?tm

6 Proof of the Lemma

Let z and t be two sufficiently large reals such that 1 < t < .

It’s clear that if a prime number ¢ exists such that ¢ = —1[m], ¢|n, and ¢* fn,
then m|o(n).

Let ¢; < g2 < ... be the prime numbers such that ¢; = —1[m].

From a corollary of a theorem by Dirichlet concerning the prime numbers in
arithmetic progressions, we have the following:



<= 4 O
And from this we deduce that:
¢—1 Inlnt
= +O(1). 6
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q;<t,qi=—1[m]

Now we will consider the following product: [T, o, ,— 17, (1 — qz’qgl)

We know that for all real y such that 0 <y < 1, the following inequality holds:

In(1 —y) < —y. (7)
Thus:

Whence:

qi<t,qi=—1[m]

And from this we deduce that:

-1, o —Inlnt _ 1
I o=t =o(ewi5h) o(—(m 1 ) (10)

q.
qi<t,qi=—1[m] !

Now we’ll consider the following product:

o= I @ (11)

qi<t,qi=—1[m]

If for a certain integer a such that 1 < a < Q? and for a prime number g
(¢; <t,q; = —1[m]) such that g;la and ¢? fa and n = a[m], then m|o(n).
By applying the sieve of Eratosthenes, we’ll find that the number of classes of



residues (mod @Q?) for which the preceding property isn’t checked for any index i is

equal to:
1 1 g — 1
| (1_5+?): A | ) (12)

qi<t,q;i=—1[m]

From this we thus conclude:

S () := card{n < x such that m Jo(n)} < (% +1)Q? H (1- %q_? 1)-

(13)

¢ <t,q;=—1[m)]

Whence:

Suw <z ] <1—qiq;1>+cz? 11 <1—q"q;1>. (14)

qi<t,qi=—1[m] qi <t,q;=—1[m]

If we define t = h‘Tx, the theorem of primes in arithmetic progressions shows
that:

Inz

Whence:
Inz
And since 2 < ¢(m) because 3 < m, then:
Q; = o(x) (17)
Thus:

g —1
Se@=0ole JI a-%55]. (18)
i 4q;
q;<t,qi=—1[m]

Whence the following result:

o (%) :O<(1n1nx+ln(%))¢<lm> :O<(lnlnx)¢<lm>) 1)

QED.



7 Following the Proof of the Theorem

Now we’ll use the lemma and start by remarking that if m|n and m fo'(n) then

m fo(n).
Thus:

{n < x such that m|n and m fo'(n)} C {n < x such that m fo(n)}. (20)

Whence:

A () := card{n < z such that m|n and m fo'(n)} < S,.(z) := card{n < x such that m fo(n)}
(21)

And from the lemma we deduce:

Ay () == card{n < x such that m|n and m fo'(n)} = O Ll (22)
(Inln x)étm
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