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1 Introduction

The purpose of this paper is to present the proof of a theorem concerning the density
of integers n divisible by a certain integer m such that m doesn’t divide σ(n)-(n).
We will demonstrate that this density is zero by giving an asymptotic upper bound
of the cardinality of these numbers n less than a real x.

2 Notations and Definitions

In the rest of the paper:

Let m be a fixed natural integer ≥ 3.

x and t will designate positive real numbers.

We denote (mod m) by [m] for brevity.

We define the sum-of-divisors and sum-of-proper-divisors functions like so:

σ(n) =
∑
d|k

d. (1)

And
σ′(n) = σ(n)− n. (2)

And we also define the function φ(n) as Euler’s totient function, which counts
the number of integers ≤ n that are coprime to n.
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3 Theorem 1

The (asymptotic) density of the integers n divisible by m such that m doesn’t divide
σ′(n) is zero.

Furthermore, we also give the following asymptotic upper bound for any suffi-
ciently large real number x:

Am(x) := card{n ≤ x such that m|n and m6 |σ′(n)} = O

(
x

(ln lnx)
1

φ(m)

)
. (3)

4 Proof of the Theorem

In order to prove this theorem, we need to prove the following intermediate lemma:

5 Lemma

For all real numbers x:

Sm(x) := card{n ≤ x such that m 6 |σ(n)} = O

(
x

(ln lnx)
1

φ(m)

)
. (4)

6 Proof of the Lemma

Let x and t be two sufficiently large reals such that 1� t� x.

It’s clear that if a prime number q exists such that q ≡ −1[m], q|n, and q2 6 |n,
then m|σ(n).

Let q1 < q2 < ... be the prime numbers such that qi ≡ −1[m].

From a corollary of a theorem by Dirichlet concerning the prime numbers in
arithmetic progressions, we have the following:
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∑
q≤t,q≡−1[m]

1

q
=

ln ln t

φ(m)
+O(1) . (5)

And from this we deduce that:

∑
qi≤t,qi≡−1[m]

qi − 1

q2i
=

ln ln t

φ(m)
+O(1) . (6)

Now we will consider the following product:
∏

qi≤t,qi≡−1[m](1−
qi−1
q2i

)

We know that for all real y such that 0 ≤ y < 1, the following inequality holds:

ln(1− y) ≤ −y. (7)

Thus:

ln(
∏

qi≤t,qi≡−1[m]

(1− qi − 1

q2i
)) ≤ −(

∑
qi≤t,qi≡−1[m]

qi − 1

q2i
) (8)

Whence:

ln(
∏

qi≤t,qi≡−1[m]

(1− qi − 1

q2i
)) ≤ −(

ln ln t

φ(m)
) +O(1) (9)

And from this we deduce that:

∏
qi≤t,qi≡−1[m]

(1− qi − 1

q2i
)) = O

(
exp(
− ln ln t

φ(m)
)

)
= O

(
1

(ln t)
1

φ(m)

)
(10)

Now we’ll consider the following product:

Qt =
∏

qi≤t,qi≡−1[m]

qi (11)

If for a certain integer a such that 1 ≤ a ≤ Q2
t and for a prime number qi

(qi ≤ t, qi ≡ −1[m]) such that qi|a and q2i 6 |a and n ≡ a[m], then m|σ(n).
By applying the sieve of Eratosthenes, we’ll find that the number of classes of
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residues (mod Q2
t ) for which the preceding property isn’t checked for any index i is

equal to:

Q2
t

∏
qi≤t,qi≡−1[m]

(1− 1

qi
+

1

q2i
) = Q2

t

∏
qi≤t,qi≡−1[m]

(1− qi − 1

q2i
) (12)

From this we thus conclude:

Sm(x) := card{n ≤ x such that m 6 |σ(n)} ≤ (
x

Q2
t

+ 1)Q2
t

∏
qi≤t,qi≡−1[m]

(1− qi − 1

q2i
).

(13)

Whence:

Sm(x) ≤ x
∏

qi≤t,qi≡−1[m]

(1− qi − 1

q2i
) +Q2

t

∏
qi≤t,qi≡−1[m]

(1− qi − 1

q2i
). (14)

If we define t = lnx
2

, the theorem of primes in arithmetic progressions shows
that:

ln(Qt) ∼
lnx

2φ(m)
(15)

Whence:

ln(Q2
t ) ∼

lnx

φ(m)
(16)

And since 2 ≤ φ(m) because 3 ≤ m, then:

Q2
t = o(x) (17)

Thus:

Sm(x) = O

x ∏
qi≤t,qi≡−1[m]

(1− qi − 1

q2i
)

 . (18)

Whence the following result:

Sm(x) = O

(
x

(ln lnx+ ln(1
2
))

1
φ(m)

)
= O

(
x

(ln lnx)
1

φ(m)

)
(19)

QED.
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7 Following the Proof of the Theorem

Now we’ll use the lemma and start by remarking that if m|n and m6 |σ′(n) then
m6 |σ(n).

Thus:

{n ≤ x such that m|n and m6 |σ′(n)} ⊂ {n ≤ x such that m 6 |σ(n)}. (20)

Whence:

Am(x) := card{n ≤ x such that m|n and m 6 |σ′(n)} ≤ Sm(x) := card{n ≤ x such that m6 |σ(n)}
(21)

And from the lemma we deduce:

Am(x) := card{n ≤ x such that m|n and m6 |σ′(n)} = O

(
x

(ln lnx)
1

φ(m)

)
(22)
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